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An important question in the stability and control of
stochastic systems is the determination of the limiting .long
time behavior of the system using a fixed control. This paper
answers that question in the case of a stochastic system per-
turbed by a small additive noise term where the control is
such that the corresponding deterministic system has a stable
limit cycle.

It is shown that in the limit of large time the stochastic
system is near the limit cycle. This is a stability result.
Moreover, one can compute approximately at which portion of the
limit cycle one is most likely to be found. Further various
stationary averages can be computed.

These results will be of use in designing approximate con-
trols for staticnary stochastic control systems. As a by-
product, the above work allows one to deduce some additional
results on singular perturbation problems in partial differen-

tial equations.
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Stochastically Perturbed Limit Cycles

Charles J. Holland

1 Introduction.i In this paper we examine the effe
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perturbing certain deterministic dynamical systems possessing

a stable limit cycle by an additive white noise term with small

intensity. We place assumptions on the system guaranteeing

that when noise is present the corresponding random process

generates an ergodic probability measure. We then

determine the behavior of the invariant measure when the noise

intensity is small. This can be considered as a purely probabi-

listic result. Using this probabilistic result we are also able

to determine the limiting large time behavior of certain singu-

larly perturbed second order partial @ifferential equations

associated with the random process through 1t8's rule.

For a model of our probabilistic process we consider the

I1t8 stochastic differential equation

ae = £(g)at+ (2¢)Y 25 (8 )au(t) .

(1)

In (1) £ is an n vector, ¢ is an n Xk matrix, w is k dimensional

Brownian motion and € is our small positive parameter. TFor € = 0

we have the corresponding deterministic dynamical system. For

e > 0 denote by gi(t) the solution to (1) with initial condition

gi(o) = X. Then throughout the following assump%ions are made.




(A1) £;, o;, are of class 6= (7™,

(A2) For € = O the system has a unique limit cycle denoted
by I'.

(A}) There exists at most a finite number of critical points
(places x* where f(x*) = 0). At each critical point the
matrix fx(x*) has only eigenvalues with positive real
parts. At each critical point the metrix o(x*)ow(x*) is

positive definite.

(A4) For any compact set B not containing critical points and
any & > O there exists T > O (depending upon B, 6) such

that if x € B, then
Orey =
d(gx(L),I) <0 far t =T
Here d denotes the Euclidean distance function.

(A5) There exists e, > O such that for 0 < & < g, the stochastic

(0) 0
differential equation possesses an ergodic measure

He with a density. For any 6 > O there exists R > O such
that

c
us[B(R) ] <6 for 0 < g < €0

where B(R) = (x: |x| < R}.
Then we prove the following result.
Theorem 1. (Cl). If B is any open set guch that I' ¢ B, then

1im p8(B) = 1 .
g0




(c2). If H is continuous and bounded, then

ol
1 .
un [ Hxae, () = & [ #E2(6)at (2)
e}0 g0 & X

where X is any point on I' and T* is the period of

the cycle, £°(t) = ¢2(¢+ ).
X X

We prove Theorem in Section 2 and discuss assumption (A5)
there. From Theorem 1 we can immediately derive a result in
partial differential equations under the following additional

assumption.

(A6) There exists & > O such that for O < ¢ < € there is a

€

bounded solution u® on (t> 0) xR to

o P =
trace (eoo uxx)4-fux gy = G (3)

with initial condition u®(0,x) = H(x), x € R®. The

function H is assumed continuous and bounded as in Theorem 1.

Assumption (A6) is discussed in Section 2.

€

The solution u® to (3) satisfies uf(t,x) = EH(Ei(t)). Since

(1) has for each ¢ an ergodic measure, then, for all x

()

1im u®(t,x) =f H(y)due(:r)
t>oo Rn

Hence we have the following
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Theorem 2. Assume (Al) - (A6). Then
T*
; € 1 O¢,
lim 1im u (t,x) = = H(E-(t))at . - (5)
>0 t>o . o X
However, for any t > O, no matter how large, we have
. € e 0 6
1im u®(t,x) = H(EJ(t)) . (6)

e>0

See Fleming [1], Theorem 4.1. Equations (5) and (6) show that
caution must be observed when attempting to approximate the long
term behavior of a physical system subject to small random
disturbances.

In Section 3 we consider a class of problems for which both
the invariant measure He and the limit cycle I' can be computed
explicitly. We evaluate directly both sides of equation (2).

In earlier work ([6],[7]) we have considered equation (1)
when the corresponding'deterministic dynamical system has the
origin as a globally asymptotically stable eguilibrium point. In

Section 4 we consider that case and prove easily the following

Theorem 3. Assume (Al), (A5), and

(A2'). For ¢ = 0, (1) has a unique critical point at x* = 0 which

is globally asymptotically stable.
Then, if B is any open set containing the origin

iig n(B) = 1. (7)

If H is continuous and bounded, then




1m {n H(x)au_(x) = H(0) . (8)

Under sfronger assumptions and using a completely d&fferent
technique we established in [6] an expansion of the left hand side
of (8) in powers .of €. One might attempt to derive such a result
for the left hand side of (2). We give an example to illustrate
the potential difficulty in deriving such an expansion without

strong assumptions.




2. In this section we first prove Theorem 1 and then discuss

assumptions (A5) and (A6).

d

Proof of Theorem 1. We first establish (Cl). To do this we begin
by constructing for each critical point x* a neighborhood N con-

taining x* such that

lim us(N) & 0 (9)
e>0

For notational convenience let x* = 0 denote a critical point.

Since assumption (A3) holds, there exists a positive definite
matrix P, a positive constant c¢ and a neighborhood Z of x¥ =0

L

such that if V(x) = x'Px, then V.f > 0 in Z (see [5], p. 296) and

also trace ocTP.i,c in Z. Now let Cys Co» M be positive constants

with ¢; > ¢, > M and such that the set S = (x: V(x) < cl} e 2.

1
Define Q@ = {x: V(x) < ¢y}, N = {x:V(x) < M}, and let 0 <y < 1/2
be such that d(9S,dQ) > 2y and d(dN,dQ) > 2y. We shall need these
facts below.

We claim that (9) holds for the above N. Suppose not, then
we shall show (in a lengthy argument) that this leads to a contra-

diction. First, since (9) is assumed false, there exists a

positive number § such that lim ue(N) > 8. Using assumptions
>0

(A5), (A3) we next choose R such that I' ¢ B(R), all critical
points lie in B(R-1), and ue(B(R)c) < 8/6 for 0 < g < eo for some
fixed Eo > 0.

For each ¢ > 0, let Es(t) be the solution to (1) with initial
condition distributed according to the measure Mo Define sets

,» Kj by




[

Ki={e( )‘N: TE)EM: EE(O)eN]’

& - CE
KE= (B5(H)en, *<25 TlO)em, -
K= 2°E e v, T5(0) ¢ B(R) -

N, £5(0) € B(R)} ,

M

kE = (£5(2)

where M is the maximum of V in N and 1% is the exit time of 'E\,'e(t)
from N if £5(0) € N.
Since uE(N) = P(E€(t) € N} for any t > O, then

e (N) = :P(Ks . (10)

We need to estimate the terms on the right side of the previous

equality. First, we have P[Kﬁ] < 5/6. .
Let us estimate P(Ki] next. If x e N, let -ri be the exit

time of E,;(t) from N. Then using the It8 stochastic differential

rule we have for any t > O that

EV(ES(tAty)) - EV(x)
t/\'ri
T € €
> Ef (fo+e trace Poo )(gx(t))dt > ecE(t/\-rx) "
0

Then M > scE(t/\ri) where M has been previously defined as the

maximum of V in N. Therefore for all q > O

M
QP[T *Ql X v

r. . w“»_w-,.ﬁ:m”—. e — - - ey v_ﬁ
. | ‘ V4
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derivation of (11).

Choosing q = g%, one obtains P[ri » %%} < %. From this fact we

have that P{Kl] < uE(N)/2.

Iet us now estimate P(K;). To do this we first derive the
estimate (11) below. ILet T' be chosen so that if x € S-N, then
gg(t) e s for t > T'. Note that once the trajectory gg(t) 2
leaves N(Q,S) it never returns to N(Q,S). Using (A4), let R' be

chosen so that

(&2(t) :x € B(R) , t > 0} < B(R'-1)

and R" be chosen so that

[ﬁg(t): x'e B(R'),.t > 0] < BlR"=1) &

Now choose T > T' so that if x e B(R') - B(R), then gg(t) e B(R)
for t > T' and d(gg(t),aB(R)) > 2y for t > T'. This can be done
using (A4) and the fact that B(R') - B(R-1) contains no critical
points. Now let x be any random initial condition such that
x € B(R') wpl. Then standard estimates yield that

P{ sup t) -€, (t | » y} < 2n exp (-ye l/2k) (11)

0<t<T

where n is the dimension of the space and A is a constant depending

upon T and a bound on o, f .on B(R"). See [1l], Lemma 2.1 for a

Now for sufficiently small & so that T < %%,




P = P(E¢ ( ) e N, £€%(0) € B(R) - N}

;!
|

LQM] =& e w, 1) ¢B(R) -0,

1 A

T= EE(kT) e BRI ) =iy B = X, sungdels
+ p(EEE) e W, BE(kT) € B(R') -0, K = L.en, [EH]) -

Using estimate (11) appropriately we have that

P(KS) < ([\:QTMtl“ 1)2n exp (~ye~1/23)
Note that P[K;:] — 0 as e} O.

It remains to estimate P(KS). The construction of the
estimate for P(Kg).is similar to that for P(Kg) except that we
condition upon the firét time that ge(t) exits from N. One obtains
that P{Kg} — 0 as ¢ O.

Hence we have

o 3 5 _ 45
6—11mp.(N):—2- Ghore = z -

el0
However, this is impossible for & > O. Thus & must be O and
therefore we can construct a neighborhood of the critical point
such that (9) holds.
Now suppose there are k critical points Xqseees Xy and let
Ni be a neighborhood of Xy constructed by the above procedure.

Now take any compact set B not intersecting the cycle I' nor

k
L) Ni' We claim Iim M (B) = 0. Suppose not, then 1im T (B) =
=1 €0 el0

for some & > O. Choose R so that B < B(R), each N, < B(R) and

i
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such that p.s(B(R)c) < 5/6. Ilet w be such that d(I',B) > 2w. Then

k
choose T such that if x € B(R) - () N;, then d(g,(t),T) < o for
i=1

t > T. Using the estimate (11) again we have that :
Pi)sup lg;(t)-— g;’(t)l > w} -0 as €| 0. (12)
<t<T
Hence .
u®(B) = PLE°(T) € B)

I

~ ~ k
P[£°(T) € B, €°(0) € B(R) - _U1 N, ]
1=
~ o~ k
+ P[E%(T) € B, €5(0) ¢ UJ m,]
. : i=1
+ PE5(T) € B, €%(0) € B(R)] .

Notice that the third term on the right side is bounded above by
5/6 and the second term by uE(Ni) which has limit O as e O.
Using estimate (12) we have that the first term has limit zero as

e} 0. Hence

5 = 1im p_(B) < 8/6
elo € O

contradicting the fact that 8 > O. Therefore 5 = 0 and lim “a(B)= 0.
evO
We are now ready to establish (Cl). Let B be any open set

containing . For any R such that B ¢ B(R),

1

he(B) +u_(B(R) - B) +u_(B(R)®)

1A

we(B) +u_(B(R) -B) +58

where 5 is a bound of ue(B(R)c) for 0 < e < gy Hence

i
|
i
|
i1
!
3
i
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1 < lim ue(B)'*ﬁ- By taking R sufficiently large, one obtains
= 0
that the above inequality holds for & arbitrarily close to O,

'

hence 1 = 1lin us(B) and therefore (Cl) holds.
€0
We now prove (C2). Now for any t > O

fH(X)dus(X) = EH(E®(¢))

where, as before, £5(0) is distributed according to the measure e

In particular, then

T*
1 o~
u[ H(x)du _(x) = 5¥k/w H(ES(t))at
R" 0
where T* is the period of the cycle. Since the measure e becomes

concentrated on the cycle ' as el 0O and H is bounded, we have that

. o
: 1 0
1im H(x)dp (%) = = H(¢_ (t))dt
alo € i y
(0]

where y is any point on the limit cycle I'. This completes the
proof of Theorem 1. Q.E.D.

Theorem 2 follows immediately from Theorem 1 as discussed
in the introduction. Let us now discuss first assumption (A5)
and then (A6). Khasminski [8], Wonham [10], Zakai [11], and
Kushner [9] have given criteria for the existence of an ergodic
measure . The results of [8] and [9] depend upon ooT being
uniformly positive definite while the others do not. The remaining
condition in (A5) depends upon the construction of an appropriate
Liapunov function, see [9] or~[10]. A class of problems for which

(A5) is satisfied is the following:
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(z) f(x) = Ax +0g(x), o is constant, g and Vg are bounded on R",
A has eigenvalues with negative real parts, (A,B) is

»

controllable and satisfies condition (CO).

For a proof of this fact see the Examples on p. 227 and Corollary 6
on p. 228 in [9]. The definition of condition (CO), a mild
restrictioh in normal applications, is given there. Controlla-
bility means that rank (B,AB,...,An—lB) = n.

We now discuss (A6). If gt is uniformly positive definite,
then conditions guaranteeing the exis;ence of a smooth solution
can be found in Theorem 12, p. 25 in [2]. However, it is not

necessary that ooT be positive definite to have a smooth solution,

see Theorem 1, p. 73 in [4].
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S In some special cases the invariant measure can be computed
explicitly. The left hand side of (2) can then be evaluated
using Laplace's method. We illustrate that technique. Let V(x)

be a smooth function such that

Cl(e) =\é; exp (-V(x)/e)dx < ®

and let h(x) = (hl(x),...,hn(x)) satisfy the equations

VheVV

|

O

div h o .

Il

Then the unique invariant probability density associated with the

stochastic differential equation

de = -vv(€) + n(g)at + (2¢) 2au(t) (13)

)-l

is pf(x) = Cl(e exp (-V(x)/e). To prove this one simply checks

that pE satisfies the Fokker-Plandckequation.
Iet x € R%, V(x) = (1-x°

- M 1
Then I' = {x :xi-rxg = 1} is a stable limit cycle whose domain of

xg)z s hi(x) = hxz and he(x)= -2%

attraction is R° - (0}.

Iet us evaluate D(e) =‘/\ xedue(x). Thus

2
- R
[ 2 exp (-v(x)/e)ax
. 2
D(e) = B .
1 exp (-V(x)/e)dx
R2

Making the change of variables s = x§4-xg, t = Xq» and using
symmetry, one obtains that

lb




k.
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(¢3) S
[ [ ®iet) exp (-(1-5)%/2e)atas
0 O

D(e)

00]

ff[Rz(s,t) exp (-(1-5)2/25)dtds
(0]

0]

where Ry (s,t) 412y ana Ry(s,t) = 1-1(s_2)-3/%,

S s
Define Ml(s) =\/{F%1(s,t)dt and M2(s) =~//—R2(s,t)dt. Utilizing
(0] 0
Laplace's method one obtaips that

iig D(e) = W,TT7 = - (14)

Now let gl(t), Ez(t) be the solution to (13) with € = 0 and
gl(o) = 0, gg(o) = 1. Since gi(t)+—gg(t) = 1, then the right hand
side of (2) is

T /4

%; Jf ‘/1- gi(t) dt .

0

Making the change of variables s = el(t), one again obtains (14).
The conclusion of Theorem 1 holds for this example even though
assumption (A2) is not satisfied. Note that the matrix fx(O) has

0, 2 as eigenvalues.
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4, In this section we consider a new case where the origin is
the unique critical point of (1) with £ = 0 and is globally
asymptotically stable. It is then easy to establish Theorem 3
using a method similar to that employed in the proof of Theorem 1l.
The details are omitted.

However, in [6] under stronger assumptions than in Theorem 3

we established an expansion

{n H(x)dp_(x) = ¢  + E; chJ+o(81’-: e
valid for any positive integer k. The constants cj can be found
by solving linear algebraic equations with Eo ™ H(0). Among the
assumptions in [6] are that the matrix fx(o) have only eigenvalues
with negative real parts. See [6] or [7] for details.

The expansion (15) is not always to be expected. Consider
d¢ = —§3dt-+(2e)l/2dw(t). This equation has an invariant measure
for € > O given by B(e) exp (-xu/he) where B(e) is a normalizing

constant. An easy calculation shows that

‘/‘xedue(x) = Csl/2
R

for an appropriate constant C. This contradicts the expansion (15).

The difficulty is that fx(O) = 0 so that the rate of approach to
the origin is too slow.

One might be tempted to derive an expansion of (2) in powers
of e. However, one will probably need an additional assumption
guaranteeing that the rate of approach of the deterministic tra-
Jectories to ' near I' is "sufficiently fast".

e
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